Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 238: 115595, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595478

RESUMO

Heparan sulfate (HS) plays a critical role in various biological processes as a vital component of the extracellular matrix. In this study, we synthesized three fluorescent probes (1-3) comprising Arg-rich peptides as HS receptors and a fluorophore capable of exhibiting red-shifted emissions upon aggregation. All three probes demonstrated ratiometric responses to HS and heparin in aqueous solutions. Remarkably, probe 3 exhibited a unique ratiometric response to HS in both aqueous solutions at physiological pH and HS proteoglycans on live cells. Probe 3 displayed exceptional sensing properties, including high biocompatibility, water solubility, visible light excitation, a large Stokes shift for ratiometric detection and remarkable selectivity and sensitivity for HS (with a low limit of detection: 720 pM). Binding mode studies unveiled the crucial role of charge interactions between probe 3 and negatively charged HS sugar units. Upon binding, the fluorophore segments of the probes overlapped, inducing green and red emission changes through restricted intramolecular rotation of the fluorophore moiety. Importantly, probe 3 was effectively employed to quantify the reduction of HS proteoglycan levels in live cells by inhibiting HS sulfation using siRNA and an inhibitor. It successfully detected decreased HS levels in cells treated with doxorubicin and irradiation, consistent with results obtained from western blot and immunofluorescence assays. This study presents the first ratiometric fluorescent probe capable of quantitatively detecting HS levels in aqueous solutions and live cells. The unique properties of peptide-based probe 3 make it a valuable tool for studying HS biology and potentially for diagnostic applications in various biological systems.


Assuntos
Técnicas Biossensoriais , Heparina , Corantes Fluorescentes , Heparitina Sulfato , Ionóforos , Peptídeos , Concentração de Íons de Hidrogênio
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122502, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841137

RESUMO

The detection of Pb2+ ions in aquatic environments and biofluid samples is crucial for assessment of human health. Herein, we synthesized two fluorescent probes (1 and 2) consisting of the peptide receptor for Pb2+ and a benzothiazolyl-cyanovinylene fluorophore that exhibited excimer-like emission when it aggregated. The peptide-based probes sensitively detected Pb2+ in purely aqueous solution (1% DMF) through ratiometric fluorescent response with a decrease in monomer emission at 520 nm and an increase in excimer emission at 570 nm. Specially, probe 2 showed remarkable detection features such as high selectivity for Pb2+over 15 metal ions, high binding affinity (Kd = 5.83 × 10-7 M) for Pb2+, significant emission intensity changes, low detection limit (3.8 nM) of Pb2+, high water solubility, and visible light excitation (450 nm). Probe 2 was successfully used to quantify nanomolar concentration (0 âˆ¼ 800 nM) of Pb2+ in real water samples (ground water and tap water). Specially, 2 was successfully applied for the quantification of Pb2+ in human serum by combination of microwave-assisted human serum digestion and filtration of digested serum by anion exchange cartridge. We clearly investigated the binding mode of 2 with Pb2+ using 1H NMR, IR spectroscopy, pH titration, confocal microscopy, and size analysis. The peptide-based fluorescent probe might have great application potential for sensing Pb2+ in aquatic environments and biofluid samples.


Assuntos
Corantes Fluorescentes , Chumbo , Humanos , Corantes Fluorescentes/química , Peptídeos/química , Íons/análise , Água/química , Espectrometria de Fluorescência/métodos
3.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295378

RESUMO

Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve agents, especially sarin. Cellulose (CE), manganese oxide cellulose (MnO2@CE), and MnO2@CE/polypyrrole (PPy) exhibited a frequency shift of 0.4, 4.8, and 8.9 Hz, respectively, for a DMMP concentration of 25 ppm in the quartz crystal microbalance (QCM). In surface acoustic wave (SAW) sensor, they exhibited 187 Hz, 276 Hz, and 78 Hz, respectively. A comparison between CE, MnO2@CE, and MnO2@CE/PPy demonstrated that MnO2@CE/PPy possesses excellent linearity with a coefficient of determination (COD or R2) of 0.992 and 0.9547 in the QCM and SAW sensor. The hybrid composite materials showed a reversible adsorption and desorption phenomenon in the reproducibility test. The response and recovery times indicated that MnO2@CE/PPy showed the shortest response (~23 s) and recovery times (~42 s) in the case of the QCM sensor. Hence, the pristine CE and its nanostructured composites were compared to analyze the sensing performance based on sensitivity, selectivity, linearity, reproducibility, and response and recovery times to detect the simulant of nerve agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...